High grain number is positively correlated with grain yield in rice, but it is compromised because of poor filling of basal spikelets in dense panicle bearing numerous spikelets. The phenomenon that turns the basal spikelets of compact panicle sterile in rice is largely unknown. In order to understand the factor(s) that possibly determines such spikelet sterility in compact panicle cultivars, QTLs and candidate genes were identified for spikelet fertility and associated traits like panicle compactness, and ethylene production that significantly influences the grain filling using recombinant inbred lines developed from a cross between indica rice cultivars, PDK Shriram (compact, high spikelet number) and Heera (lax, low spikelet number). Novel QTLs, qSFP1.1, qSFP3.1, and qSFP6.1 for spikelet fertility percentage; qIGS3.2 and qIGS4.1 for panicle compactness; and qETH1.2, qETH3.1, and qETH4.1 for ethylene production were consistently identified in both kharif seasons of 2017 and 2018. The comparative expression analysis of candidate genes like ERF3, AP2-like ethylene-responsive transcription factor, EREBP, GBSS1, E3 ubiquitin-protein ligase GW2, and LRR receptor-like serine/threonine-protein kinase ERL1 associated with identified QTLs revealed their role in poor grain filling of basal spikelets in a dense panicle. These candidate genes thus could be important for improving grain filling in compact-panicle rice cultivars through biotechnological interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245594PMC
http://dx.doi.org/10.1038/s41598-021-93134-7DOI Listing

Publication Analysis

Top Keywords

grain filling
16
basal spikelets
16
filling basal
12
spikelets dense
12
dense panicle
12
candidate genes
12
novel qtls
8
fertility associated
8
associated traits
8
poor grain
8

Similar Publications

Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.

View Article and Find Full Text PDF

The gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the gene family in wheat, using the latest genomic data from the Chinese Spring.

View Article and Find Full Text PDF

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF

Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling.

Plants (Basel)

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China.

Controlled-release nitrogen fertilizers are gaining popularity in rice ( L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice.

View Article and Find Full Text PDF

Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment.

Plants (Basel)

December 2024

Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy.

The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!