Knowledge of electrolyte transport and thermodynamic properties in Li-ion and beyond Li-ion technologies is vital for their continued development and success. Here, we present a method for fully characterising electrolyte systems. By measuring the electrolyte concentration gradient over time via operando Raman microspectroscopy, in tandem with potentiostatic electrochemical impedance spectroscopy, the Fickian "apparent" diffusion coefficient, transference number, thermodynamic factor, ionic conductivity and resistance of charge-transfer were quantified within a single experimental setup. Using lithium bis(fluorosulfonyl)imide (LiFSI) in tetraglyme (G4) as a model system, our study provides a visualisation of the electrolyte concentration gradient; a method for determining key electrolyte properties, and a necessary technique for correlating bulk intermolecular electrolyte structure with the described transport and thermodynamic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245635PMC
http://dx.doi.org/10.1038/s41467-021-24297-0DOI Listing

Publication Analysis

Top Keywords

operando raman
8
raman microspectroscopy
8
transport thermodynamic
8
thermodynamic properties
8
electrolyte concentration
8
concentration gradient
8
electrolyte
6
characterising lithium-ion
4
lithium-ion electrolytes
4
electrolytes operando
4

Similar Publications

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Raman microscopy of the Cu/LiAlGe(PO) solid electrolyte interphase.

Chem Commun (Camb)

December 2024

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

LiAlGe(PO) (LAGP) is a promising solid-state electrolyte (SSE) for solid-state batteries but suffers from side reactions with Li metal resulting in cracking and interfacial resistance rise which hinders its practical application. Herein, in operando Raman spectroscopy was performed to gain insights into local chemical and structural transformations of the Cu/LAGP interface during cathodic polarization.

View Article and Find Full Text PDF

Real-Time Detection of Dynamic Restructuring in KNiFe F Perovskite Fluorides for Enhanced Water Oxidation.

Small

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

Mechanistic understanding of how electrode-electrolyte interfaces evolve dynamically is crucial for advancing water-electrolysis technology, especially the restructuring of catalyst surface during complex electrocatalytic reactions. However, for perovskite fluorides, the mechanistic exploration for the influence of the dynamic restructuring on their chemical property and catalytic mechanism is unclear due to their poor conductivity that makes the definition of electrocatalyst structure difficult. Herein, for oxygen evolution reaction (OER), various operando characterizations are employed to investigate the structure-activity relationships of the KNiFe F@NF.

View Article and Find Full Text PDF

Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction?

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States.

A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La incorporation into CoO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!