Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The hydrocarbon-chain packing structure of intercellular lipids in the stratum corneum (SC) is critical to the skin's barrier function. We previously found that formation of V-shaped ceramide reduces the barrier function of skin. There are few agents, apart from ceramides and fatty acids that can improve the orthorhombic packing (Orth) ratio of the intercellular lipid packing structure. In this study, we investigated agents that directly increase the Orth ratio. We selected an intercellular lipid model consisting of ceramide, cholesterol, and palmitic acid and performed differential scanning calorimetry. We focused on natural moisturizing factor components in the SC, and therefore investigated amino acids and their derivatives. The results of our intercellular lipid model-based study indicate that N-acetyl-L-hydroxyproline (AHYP), remarkably, maintains the lamellar structure. We verified the effect of AHYP on the lamellar structure and hydrocarbon chain packing structure of intercellular lipids using time-resolved X-ray diffraction measurements of human SC. We also determined the direct physicochemical effects of AHYP on the Orth ratio of the hydrocarbon-chain packing structure. Hence, the results of our human SC study suggest that AHYP preserves skin barrier function by maintaining the hydrocarbon-chain packing structure of intercellular lipids via electrostatic repulsion. These findings will facilitate the development of skincare formulation that can maintain the skin's barrier function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c21-00152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!