Muscle atrophy refers to skeletal muscle loss and dysfunction that affects glucose and lipid metabolism. Moreover, muscle atrophy is manifested in cancer, diabetes, and obesity. In this study, we focused on lipid metabolism during muscle atrophy. We observed that the gastrocnemius muscle was associated with significant atrophy with 8 days of immobilization of hind limb joints and that muscle atrophy occurred regardless of the muscle fiber type. Further, we performed lipid analyses using thin layer chromatography, liquid chromatography-mass spectrometry, and mass spectrometry imaging. Total amounts of triacylglycerol, phosphatidylserine, and sphingomyelin were found to be increased in the immobilized muscle. Additionally, we found that specific molecular species of phosphatidylserine, phosphatidylcholine, and sphingomyelin were increased by immobilization. Furthermore, the expression of adipose triglyceride lipase and the activity of cyclooxygenase-2 were significantly reduced by atrophy. From these results, it was revealed that lipid accumulation and metabolic changes in specific fatty acids occur during disuse muscle atrophy. The present study holds implications in validating preventive treatment strategies for muscle atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess21045DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
28
muscle
11
atrophy
9
lipid metabolism
8
metabolism muscle
8
sphingomyelin increased
8
lipid
5
lipid dynamics
4
dynamics muscle
4
atrophy induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!