Alterations in gut microbiota in early life have been associated with the development of asthma; however, the role of gut bacteria or the IgA response to gut bacteria in school-aged children with asthma is unclear. To address this question, we profiled the microbial populations in fecal and nasal swab samples by 16S rRNA sequencing from 40 asthma and 40 control children aged 9-17 y from Peru. Clinical history and laboratory evaluation of asthma and allergy were obtained. Fecal samples were analyzed by flow cytometry and sorted into IgA and IgA subsets for 16S rRNA sequencing. We found that the fecal or nasal microbial 16S rRNA diversity and frequency of IgA fecal bacteria did not differ between children with or without asthma. However, the α diversity of fecal IgA bacteria was decreased in asthma compared with control. Machine learning analysis of fecal bacterial IgA-enrichment data revealed loss of IgA binding to the , , and taxa in children with asthma compared with controls. In addition, this loss of IgA binding was associated with worse asthma control (Asthma Control Test) and increased odds of severe as opposed to mild to moderate asthma. Thus, despite little to no change in the microbiota, children with asthma exhibit an altered host IgA response to gut bacteria compared with control participants. Notably, the signature of altered IgA responses is loss of IgA binding, in particular to members of spp., which is associated with greater severity of asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8516662 | PMC |
http://dx.doi.org/10.4049/jimmunol.2001296 | DOI Listing |
Expert Rev Mol Diagn
January 2025
Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy.
Introduction: Non-Celiac Gluten Sensitivity (NCGS) is a common disorder characterized by symptoms resembling those of irritable bowel syndrome. In recent years there has been progress in the understanding of the pathogenic pathways and data suggest that NCGS has a distinct immunological profile that differs from celiac disease (CeD). This has fostered the search for a specific biomarker of NCGS.
View Article and Find Full Text PDFChin Med
January 2025
Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.
View Article and Find Full Text PDFPediatr Res
January 2025
Heart Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.
Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.
Sci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFNat Commun
January 2025
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!