AI Article Synopsis

  • * In this study, researchers analyzed the sex chromosomes of a moss species to understand if they showed signs of degeneration, revealing that these chromosomes evolved over 300 million years ago and expanded through chromosomal fusions.
  • * Although these moss sex chromosomes have weaker selection pressure compared to autosomes, the study found that simply having suppressed recombination doesn't lead to degeneration; instead, the UV sex chromosomes contain many important genes involved in sexual development in land plants.

Article Abstract

Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245031PMC
http://dx.doi.org/10.1126/sciadv.abh2488DOI Listing

Publication Analysis

Top Keywords

sex chromosomes
28
chromosomes harbor
8
regulators sexual
8
sexual development
8
suppressed recombination
8
chromosomes
7
sex
6
gene-rich sex
4
harbor conserved
4
conserved regulators
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!