Celastrol inhibits the proliferation and angiogenesis of high glucose-induced human retinal endothelial cells.

Biomed Eng Online

Hankou Aier Eye Hospital, No.328, Machang Road, Jianghan District, Wuhan, 430000, Hubei, China.

Published: June 2021

Background: Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes. Celastrol plays a certain role in the improvement of various diabetes complications. Therefore, this study aimed to explore whether celastrol inhibited the proliferation and angiogenesis of high glucose (HG)-induced human retinal endothelial cells (hRECs) by down-regulating the HIF1/VEGF signaling pathway.

Methods: The viability and proliferation of hRECs treated with glucose, celastrol or dimethyloxallyl glycine (DMOG) were analyzed by MTT assay. The invasion and tube formation ability of hRECs treated with glucose, celastrol or DMOG were in turn detected by transwell assay and tube formation assay. The expression of HIF1α and VEGF in hRECs after indicated treatment was analyzed by Western blot analysis and RT-qPCR analysis and ICAM-1 expression in hRECs after indicated treatment was detected by immunofluorescence assay RESULTS: HG induction promoted the proliferation, invasion and tube formation ability and increased the expression of HIF-1α and VEGF of hRECs, which were gradually suppressed by celastrol changing from 0.5 to 2.0 μM. DMOG was regarded as a HIF1α agonist, which attenuated the effect of celastrol on HG-induced hRECs.

Conclusion: Celastrol inhibited the proliferation and angiogenesis of HG-induced hRECs by down-regulating the HIF1α/VEGF signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244207PMC
http://dx.doi.org/10.1186/s12938-021-00904-5DOI Listing

Publication Analysis

Top Keywords

proliferation angiogenesis
12
tube formation
12
celastrol
8
angiogenesis high
8
human retinal
8
retinal endothelial
8
endothelial cells
8
celastrol inhibited
8
inhibited proliferation
8
hrecs down-regulating
8

Similar Publications

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Advances in VEGFR Inhibitors: A Comprehensive Review of Novel Anticancer Agents.

Anticancer Agents Med Chem

January 2025

School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India.

Cancer, characterized by aberrant cell growth, presents a formidable health challenge, impacting millions of individuals worldwide each year. Among the myriad mechanisms facilitating tumor progression, Vascular Endothelial Growth Factor receptors (VEGFR) play a pivotal role in driving angiogenesis the process by which tumors develop their own blood supply. This vascularization not only supports tumor nourishment and growth but also facilitates metastasis, enabling cancer to spread to distant sites.

View Article and Find Full Text PDF

Rationale And Objectives: Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC.

View Article and Find Full Text PDF

Exosome-carried miR-1248 from adipose-derived stem cells improves angiogenesis in diabetes-associated wounds.

Int J Biol Macromol

January 2025

Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, PR China; The 2011 Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Affiliated Hospital of Zunyi Medical University, PR China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, PR China. Electronic address:

Chronic non-healing wounds are a common complication of diabetes, marked by impaired angiogenesis. This study explores how exosomes (Exo-miR-1248) from miR-1248-overexpressing adipose-derived stem cells enhance diabetic wound healing by modulating endothelial cell function. Adipose-derived stem cells were transfected with a lentivirus carrying miR-1248 to produce Exo-miR-1248, isolated via differential centrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!