A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of aqueous humor melatonin levels by yellow-filter and its protective effect on lens. | LitMetric

Modulation of aqueous humor melatonin levels by yellow-filter and its protective effect on lens.

J Photochem Photobiol B

Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain. Electronic address:

Published: August 2021

Melatonin is mainly secreted by the pineal gland, and it is also produced by various ocular structures such as the lens. It has been recently demonstrated that melatonin ocular synthesis can be induced by blocking the blue component of white light by means of filters. Melatonin exhibits antioxidant properties that can be useful to face light-induced oxidative stress as well as oxidative events associated to ocular pathologies like cataracts. Moreover, as oxidative stress is a main event in cataract development, changes in melatonin levels could happen and be relevant in the progression of this pathology, a subject that remains uncertain. The goal of this work was to analyze the ability of a short wavelength light blocking (yellow) filter to modulate endogenous melatonin concentration and the antioxidant and cytoprotective actions induced by yellow filter's use in lens. Furthermore, we evaluated the potential changes in aqueous humor melatonin concentration from patients with cataracts. In human lens epithelial cells, white light-emitting diode (LED) light challenge reduced melatonin secretion, protein levels of the enzymes involved in melatonin synthesis (hydroxyindole-O-methyltransferase and unphosphorylated and phosphorylated forms of arylalkylamine N-acetyltransferase) and cell viability whereas increased reactive oxygen species production. Yellow filter exposure precluded melatonin secretion reduction and protected cells from oxidative damage. Consistent with cataract patient's results, significantly lower levels of melatonin were observed in aqueous humor of alloxan-induced diabetic cataract rabbits as compared to those of control rabbits. In contrast, aqueous humor melatonin levels of diabetic cataract animals maintaining in cages covered with a yellow filter resembled control values. This recovery seems to be mediated by the induction of melatonin biosynthetic enzymes protein expression. Yellow filter also preserved Nrf2 lens protein expression and superoxide dismutase protein levels and activity in diabetic animals. Modulation of endogenous ocular melatonin concentration using blocking filters might be a promising approach to prevent premature lens opacification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2021.112248DOI Listing

Publication Analysis

Top Keywords

aqueous humor
16
yellow filter
16
melatonin
14
humor melatonin
12
melatonin levels
12
melatonin concentration
12
oxidative stress
8
melatonin secretion
8
protein levels
8
diabetic cataract
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!