A non-destructive discrimination method for crystals in solid dosage drug forms was first developed using a combination of Raman spectroscopy and X-ray micro-computed tomography (X-ray CT). Identification of the crystal form of an active pharmaceutical ingredient (API) at the appropriate pharmaceutical dosage is crucial, as the crystal form is a determinant of the quality and performance of the final formulation. To develop a non-destructive analytical methodology for the discrimination of solid API crystals in a solid dosage form, we utilized a combination of Raman spectroscopy and X-ray CT to differentiate between ranitidine crystal polymorphs (forms 1 and 2) in tablet formulations containing three excipients. The difference in electron density correlated with the true density between ranitidine polymorphs, thereby enabling the discrimination of crystal forms and visualization of their three-dimensional spatial localization inside the tablets through X-ray CT imaging. Furthermore, X-ray CT imaging revealed that the crystal particles were of varying densities, sizes, and shapes within the same batch. These findings suggest that X-ray CT is not only an imaging tool but also a unique method for quantitative physicochemical characterization to study crystal polymorphs and solid dosage forms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120834DOI Listing

Publication Analysis

Top Keywords

solid dosage
16
x-ray imaging
12
x-ray micro-computed
8
micro-computed tomography
8
three-dimensional spatial
8
dosage forms
8
crystals solid
8
combination raman
8
raman spectroscopy
8
spectroscopy x-ray
8

Similar Publications

Background: Sirolimus is a commonly used immunosuppressant administered after solid organ transplantation. It is characterized by a narrow therapeutic window and highly variable exposure, necessitating the identification of the sources of variability and design of individualized drug therapies.

Aim: This study aimed to perform a population pharmacokinetic (PK) analysis of sirolimus in adult liver transplant recipients and develop dosing regimen recommendations according to patient characteristics.

View Article and Find Full Text PDF

Background: Yttrium-90 FF-21101 (Y-FF-21101) is a radiopharmaceutical that targets P-cadherin as a therapy against solid tumors. A previously reported, first-in-human study determined that a dose of 25 mCi/m was safe, and a patient with clear cell carcinoma of the ovary achieved a complete response. In this article, the authors report the results of Y-FF-21101 treatment in an ovarian carcinoma expansion cohort and in patients with selected solid tumors who had known high P-cadherin expression.

View Article and Find Full Text PDF

Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung.

Nat Commun

January 2025

Center for Infection and Immunity, Guangdong Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.

Suppression of chimeric antigen receptor-modified T (CAR-T) cells by the immunosuppressive tumor microenvironment remains a major barrier to their efficacy against solid tumors. To address this, we develop an anti-PD-L1-expressing nanovesicle loaded with the STING agonist cGAMP (aPD-L1 NVs@cGAMP) to remodel the tumor microenvironment and thereby enhance CAR-T cell activity. Following pulmonary delivery, the nanovesicles rapidly accumulate in the lung and selectively deliver STING agonists to PD-L1-overexpressing cells via the PD-1/PD-L1 interaction.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.

View Article and Find Full Text PDF

Introduction: High-producing dairy cows often face calving stress and reduced feed intake during the transition period, leading to body fat mobilization to meet production demands. Supplementing rations with energy-dense sources like rumen-protected glucose (RPG) may enhance production performance in early lactation.

Methods: This study evaluated the effects of RPG supplementation on feed intake, body condition score (BCS), production performance, and blood metabolites in 32 early-lactation Holstein Friesian cows (6 ± 1 DIM; milk yield: 30 ± 5 kg/day; body weight: 550 ± 50 kg; BCS: 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!