Background: Diarrhea is a common occurrence in children below the age of 5 years. In chronic cases, it induces malnutrition that severely stunts growth. Bile acid diarrhea (BAD), caused by malabsorption of bile acid (BA), is a rare form of chronic diarrhea seldom observed in pediatric patients. Here, we present a clinical report on a novel case of chronic BAD, with severe stunting in an infant, induced by a homozygous mutation of SLC10A2.
Methods: We performed DNA extraction, whole-exome sequencing analysis, and mutation analysis of SLC10A2 to obtain genetic data on the patient. We subsequently analyzed the patient's clinical and genetic data.
Results: The patient's clinical manifestations were chronic diarrhea with increased BAs in the feces and extreme stunting, which was diagnosed as BAD. A homozygous mutation of SLC10A2 at the c.313T>C (rs201206937) site was detected.
Conclusion: Our report reveals the youngest case illustrating the characteristics of BAD induced by genetic variant at 313T>C, and the second case entailing a clear association between a SLC10A2 genetic mutation and the onset of BAD. Our findings expand the mutant spectrum of the SLC10A2 gene and contribute to the refinement of the genotype-phenotype mapping of severe stunting induced by pediatric BAD. Moreover, they highlight the value of molecular genetic screening for diagnosing BAD in young patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404231 | PMC |
http://dx.doi.org/10.1002/mgg3.1740 | DOI Listing |
Int J Biol Sci
January 2025
Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.
View Article and Find Full Text PDFGut Microbes
December 2025
Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan. Electronic address:
The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!