A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Risk-Aware Identification of Highly Suspected COVID-19 Cases in Social IoT: A Joint Graph Theory and Reinforcement Learning Approach. | LitMetric

The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly become a pandemic, which calls for prompt action in identifying suspected cases at an early stage through risk prediction. To suppress its further spread, we exploit the social relationships between mobile devices in the Social Internet of Things (SIoT) to help control its propagation by allocating the limited protective resources to the influential so-called high-degree individuals to stem the tide of precipitated spreading. By exploiting the so-called differential contact intensity and the infectious rate in susceptible-exposed-infected-removed (SEIR) epidemic model, the resultant optimization problem can be transformed into the minimum weight vertex cover (MWVC) problem of graph theory. To solve this problem in a high-dynamic random network topology, we propose an adaptive scheme by relying on the graph embedding technique during the state representation and reinforcement learning in the training phase. By relying on a pair of real-life datasets, the results demonstrate that our scheme can beneficially reduce the epidemiological reproduction rate of the infection. This technique has the potential of assisting in the early identification of COVID-19 cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043494PMC
http://dx.doi.org/10.1109/ACCESS.2020.3003750DOI Listing

Publication Analysis

Top Keywords

covid-19 cases
8
graph theory
8
reinforcement learning
8
risk-aware identification
4
identification highly
4
highly suspected
4
suspected covid-19
4
cases social
4
social iot
4
iot joint
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!