Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: There exists a wide gap in the availability of mechanical ventilator devices and their acute need in the context of the COVID-19 pandemic. An initial triaging method that accurately identifies the need for mechanical ventilation in hospitalised patients with COVID-19 is needed. We aimed to investigate if a potentially deteriorating clinical course in hospitalised patients with COVID-19 can be detected using all X-ray images taken during hospitalisation.
Methods: We exploited the well-established DenseNet121 deep learning architecture for this purpose on 663 X-ray images acquired from 528 hospitalised patients with COVID-19. Two Pulmonary and Critical Care experts blindly and independently evaluated the same X-ray images for the purpose of validation.
Results: We found that our deep learning model predicted the need for mechanical ventilation with a high accuracy, sensitivity and specificity (90.06%, 86.34% and 84.38%, respectively). This prediction was done approximately 3 days ahead of the actual intubation event. Our model also outperformed two Pulmonary and Critical Care experts who evaluated the same X-ray images and provided an incremental accuracy of 7.24%-13.25%.
Conclusions: Our deep learning model accurately predicted the need for mechanical ventilation early during hospitalisation of patients with COVID-19. Until effective preventive or treatment measures become widely available for patients with COVID-19, prognostic stratification as provided by our model is likely to be highly valuable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/bmjinnov-2020-000593 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!