Combined laser and ozone therapy for onychomycosis in an in vitro and ex vivo model.

PLoS One

Departamento de Biología Funcional, Research Unit "Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC", Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.

Published: November 2021

In order to develop a fast combined method for onychomycosis treatment using an in vitro and an ex vivo models, a combination of two dual-diode lasers at 405 nm and 639 nm wavelengths, in a continuous manner, together with different ozone concentrations (until 80 ppm), was used for performing the experiments on fungal strains growing on PDA agar medium or on pig's hooves samples. In the in vitro model experiments, with 30 min combined treatment, all species are inhibited at 40 ppm ozone concentration, except S. brevicaulis, which didn't show an inhibition in comparison with only ozone treatment. In the ex vivo model experiments, with the same duration and ozone concentration, A. chrysogenum and E. floccosum showed total inhibition; T. mentagrophytes and T. rubrum showed a 75% growth inhibition; M. canis showed a delay in sporulation; and S. brevicaulis and A. terreus did not show growth inhibition. This combined laser and ozone treatment may be developed as a fast therapy for human onychomycosis, as a potential alternative to the use of antifungal drugs with potential side effects and long duration treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244860PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253979PLOS

Publication Analysis

Top Keywords

combined laser
8
laser ozone
8
vitro vivo
8
vivo model
8
model experiments
8
ozone concentration
8
ozone treatment
8
growth inhibition
8
ozone
6
combined
4

Similar Publications

Type 4 pili (T4P) are multifunctional filaments involved in adhesion, surface motility, biofilm formation, and horizontal gene transfer. These extracellular polymers are surface-exposed and, therefore, act as antigens. The human pathogen Neisseria gonorrhoeae uses pilin antigenic variation to escape immune surveillance, yet it is unclear how antigenic variation impacts most other functions of T4P.

View Article and Find Full Text PDF
Article Synopsis
  • Laser-structuring techniques, particularly Direct Laser Interference Patterning, can significantly enhance the performance of pure Ni electrodes in water electrolysis by optimizing their structure.
  • A study revealed that the spatial distance between laser-structures is critical for improving electrode performance, resulting in an increase in the electrochemically active surface area by up to 12 times compared to nonstructured electrodes.
  • Optimal structuring leads to lower onset potential and overpotential during the oxygen evolution reaction due to the superhydrophilic surface, which enhances bubble growth dynamics and minimizes electrode resistance.
View Article and Find Full Text PDF

Unlabelled: Due to increasing antimicrobial resistance and side effects caused by current standard antimicrobial regimens used for treatment of prosthetic joint infection (PJI), alternative options are urgently needed. We aimed to investigate the effect of clindamycin in different exposure strategies against in an mature biofilm model. In short, 7-day biofilms were generated on polystyrene plates and titanium-aluminum-vanadium discs using a clinical PJI isolate.

View Article and Find Full Text PDF

Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately.

View Article and Find Full Text PDF

Synergistic binding ability of electrostatic tweezers and femtosecond laser-structured slippery surfaces enabling unusual droplet manipulation applications.

Lab Chip

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.

We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!