A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fatigue life analysis for 6061-T6 aluminum alloy based on surface roughness. | LitMetric

Fatigue life analysis for 6061-T6 aluminum alloy based on surface roughness.

PLoS One

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.

Published: November 2021

Surface condition is one of the dominant factors affecting fatigue life. Considering the complexity of surface condition, a relatively efficient and economic approach based on surface reconstruction and interpolation method was proposed. The effect of surface roughness on the fatigue life of 6061-T6 aluminum alloy is studied to analyze the fatigue life by surface roughness parameters. Surface topography was simplified into a series of elliptic micro notches, and empirical formula for stress concentration factor is established based on simulation work. Then the extraction method of surface curve is proposed to effectively represent the real surface roughness through 3D model reconstruction. Experiment of surface roughness verified the correctness of the model. The relationship between surface roughness and fatigue life is established and the calculated value of the fatigue life is compared with the test results. The maximum error is 15.65%, indicating that the formula established is reasonable and effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244873PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252772PLOS

Publication Analysis

Top Keywords

fatigue life
24
surface roughness
24
surface
11
6061-t6 aluminum
8
aluminum alloy
8
based surface
8
surface condition
8
roughness fatigue
8
fatigue
6
roughness
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!