A common way of illustrating phylogeographic results is through the use of haplotype networks. While these networks help to visualize relationships between individuals, populations, and species, evolutionary studies often only quantitatively analyze genetic diversity among haplotypes and ignore other network properties. Here, we present a new metric, haplotype network branch diversity (HBd), as an easy way to quantifiably compare haplotype network complexity. Our metric builds off the logic of combining genetic and topological diversity to estimate complexity previously used by the published metric haplotype network diversity (HNd). However, unlike HNd which uses a combination of network features to produce complexity values that cannot be defined in probabilistic terms, thereby obscuring the values' implication for a sampled population, HBd uses frequencies of haplotype classes to incorporate topological information of networks, keeping the focus on the population and providing easy-to-interpret probabilistic values for randomly sampled individuals. The goal of this study is to introduce this more intuitive metric and provide an R script that allows researchers to calculate diversity and complexity indices from haplotype networks. A group of datasets, generated manually (model dataset) and based on published data (empirical dataset), were used to illustrate the behavior of HBd and both of its terms, haplotype diversity, and a new index called branch diversity. Results followed a predicted trend in both model and empirical datasets, from low metric values in simple networks to high values in complex networks. In short, the new combined metric joins genetic and topological diversity of haplotype networks, into a single complexity value. Based on our analysis, we recommend the use of HBd, as it makes direct comparisons of network complexity straightforward and provides probabilistic values that can readily discriminate situations that are difficult to resolve with available metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244886PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251878PLOS

Publication Analysis

Top Keywords

haplotype network
16
haplotype networks
16
branch diversity
12
genetic topological
12
topological diversity
12
haplotype
10
diversity
10
network branch
8
combining genetic
8
networks
8

Similar Publications

The frequency of mitochondrial DNA haplogroups (mtDNA-HG) in humans is known to be shaped by migration and repopulation. Mounting evidence indicates that mtDNA-HG are not phenotypically neutral, and selection may contribute to its distribution. Haplogroup H, the most abundant in Europe, improved survival in sepsis.

View Article and Find Full Text PDF

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Genomic Evolution of the SARS-CoV-2 Omicron Variant in Córdoba, Argentina (2021-2022): Analysis of Uncommon and Prevalent Spike Mutations.

Viruses

December 2024

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.

Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.

View Article and Find Full Text PDF

In this review, we investigated the genetic diversity and evolutionary dynamics of the species that includes both Marburg virus (MARV) and Ravn virus (RAVV). Using sequence data from natural reservoir hosts and human cases reported during outbreaks, we conducted comprehensive analyses to explore the genetic variability, constructing haplotype networks at both the genome and gene levels to elucidate the viral dynamics and evolutionary pathways. Our results revealed distinct evolutionary trajectories for MARV and RAVV, with MARV exhibiting higher adaptability across different ecological regions.

View Article and Find Full Text PDF

The root is an important organ by which plants directly sense variation in soil moisture. The discovery of drought stress-responsive genes in roots is very important for the improvement of drought tolerance in wheat varieties via molecular approaches. In this study, transcriptome sequencing was conducted on the roots of drought-tolerant wheat cultivar YH1818 seedlings at 0, 2, and 7 days after treatment (DAT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!