A comparative study on aquatic toxicity of chemically-synthesized and green synthesis silver nanoparticles on .

Int J Environ Health Res

Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, Erzurum, Turkey.

Published: October 2022

The steady increase in the employment of silver nanoparticles (AgNPs) in consumer products entails the determination of the aquatic toxicity of AgNPs. Various AgNP characteristics including particle size, and shape, surface charge, and material have prominent effects on ecotoxicity. In the present study, we investigated the aquatic toxicity of chemically-synthesized AgNPs (Che-AgNPs) and green synthesis AgNPs (Gr-AgNPs) to as a model organism. In each case, Che-AgNPs and Gr-AgNPs showed dose-dependent toxicity in the range of 5-50 ppb. It was also detected that the size and surface coverage material of AgNPs has a significant impact on the survival rate of . We also analyzed the expression of some genes related to detoxification and the reproductive system. These observations presented that in both NP types the significant alterations were detected in genes of the model organism in a dose-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09603123.2021.1947991DOI Listing

Publication Analysis

Top Keywords

aquatic toxicity
12
toxicity chemically-synthesized
8
green synthesis
8
silver nanoparticles
8
model organism
8
agnps
5
comparative study
4
study aquatic
4
toxicity
4
chemically-synthesized green
4

Similar Publications

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals of concern for both human and environmental health because of their ubiquitous presence in the environment, persistence, and potential toxicological effects. Despite this, ecological hazard data are limited to a small number of PFAS even though there are over 4000 identified PFAS. Traditional toxicity testing will likely be inadequate to generate necessary hazard information for risk assessment.

View Article and Find Full Text PDF

Distinct Effect of Benzophenone-3 Additive Leaching from Polyethylene Microplastics on Daphnia magna Population Dynamics.

Bull Environ Contam Toxicol

January 2025

Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.

The adverse effect of chemical additives leaching from microplastics (MPs) on Daphnia magna populations is not fully understood. In this study, D. magna populations were exposed to polyethylene (PE) MP fragments (5.

View Article and Find Full Text PDF

Optimized Metolachlor, Epoxiconazole and Chlorantraniliprole Mixture Analysis for Aquatic Toxicity Testing Using UHPLC-MS/MS.

Bull Environ Contam Toxicol

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.

The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests.

View Article and Find Full Text PDF

Microalgae are often used in different industrial sectors and can be used as indicators of aquatic environmental health. An essential step for cultivating microalgae is assessing the cell density, which is traditionally performed through cell counting by optical microscopy (OM). However, this method has limitations, mainly in terms of runtime and low reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!