Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al-5Ti-1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al-Mg-Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al-Mg-Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al-Mg-Si alloy were improved by GR alloy addition. GR alloy addition to Al-Mg-Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al-Mg-Si alloy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305821 | PMC |
http://dx.doi.org/10.1177/00368504211029469 | DOI Listing |
Materials (Basel)
August 2024
Universidad Autónoma de Nuevo León, FIME, Centro de Investigación e Innovación en Ingeniería Aeronáutica (CIIIA), San Nicolás de los Garza 66455, Mexico.
Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China.
In this study, the crystal plasticity finite element method was established by coupling the crystal plasticity and finite element method (FEM). The effect of rolling deformation and slip system of polycrystalline Al-Mg-Si aluminum alloy was investigated. The results showed that there was a pronounced heterogeneity in the stress and strain distribution of the material during cold rolling.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
The hot compression simulation testing machine was utilized to conduct compression experiments on an Al-Mg-Si-Mn alloy containing the rare earth element Sc at a deformation temperature ranging from 450 to 550 °C and a strain rate of 0.01 to 10 s. The study focused on the hot deformation behavior of the aluminum alloy, resulting in the determination of the optimal range of deformation process parameters for the alloy.
View Article and Find Full Text PDFMicrosc Microanal
August 2024
Carbon & Light Materials Group, Korea Institute of Industrial Technology, 222 Palbok-ro, Deokjin-gu, Jeonju-City 54853, South Korea.
Optimization of user-defined parameters (Dmax, Nmin, order (K)) in the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, used to characterize nanoclusters in Al-0.9% Mg-1.0% Si-0.
View Article and Find Full Text PDFMaterials (Basel)
May 2024
Department of Metallurgical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
Strain-controlled low cycle fatigue (LCF) tests were conducted on conventionally grained (CG) and ultrafine-grained (UFG) Al-Mg-Si alloys treated under various aging conditions. In the cyclic stress response (CSR) curves, CG peak-aged (PA) alloys showed initial cyclic hardening and subsequent saturation, whereas CG over-aged (OA) alloys displayed cyclic softening behavior close to saturation. The UFG materials exhibited continuous cyclic softening except for UFG 3; it originates from the microstructural stability of the UFG materials processed by severe plastic deformation (SPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!