A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NHF-Induced Morphology Control of CoP Nanostructures to Enhance the Hydrogen Evolution Reaction. | LitMetric

Developing non-noble metal catalysts with superior catalytic activity and excellent durability is critically essential to promote electrochemical water splitting for hydrogen production. Morphology control as a promising and effective strategy is widely implemented to change the surface atomic coordination and thus enhance the intrinsic catalytic performance of current electrocatalysts. Herein, a series of cobalt phosphide (CoP) electrocatalysts with tunable morphologies of nanosheets, nanowires, nanorods, and nanoblocks have been prepared for the enhanced hydrogen evolution reaction (HER) by only adjusting the amount of ammonium fluoride (NHF) in the hydrothermal process. Benefiting from the large active area, high surface activity, and favorable ion and gas diffusion channels, the clustered CoP nanorods obtained at a concentration of 0.15 M NHF show the best HER performance with only an overpotential of 71 mV at a current density of 10 mA cm and a low Tafel slope of 60.75 mV dec in 1 M KOH. After 3000 CV cycles and 24 h durability tests, there is only a very slight degradation of performance owing to its outstanding stability and robust substrate adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01484DOI Listing

Publication Analysis

Top Keywords

morphology control
8
hydrogen evolution
8
evolution reaction
8
nhf-induced morphology
4
control cop
4
cop nanostructures
4
nanostructures enhance
4
enhance hydrogen
4
reaction developing
4
developing non-noble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!