AI Article Synopsis

Article Abstract

Electrochemical tracking of redox-inactive neurochemicals remain a challenge due to chemical inertness, almost no Faraday electron transfer for these species, and the complex brain atmosphere. In this work, we demonstrate a low-cost, simple-making liquid/liquid interface microsensor (LLIM) to monitor redox-inactive neurochemicals in the rat brain. Taking choline (Ch) as an example, based on the difference in solvation energies of Ch in cerebrospinal fluid (aqueous phase) and 1,2-dichloroethane (1,2-DCE; organic phase), Ch is recognized in the specific ion-transfer potential and distinctive ion-transfer current signals. The LLIM has an excellent response to Ch with good linearity and selectivity, and the detection limit is 0.37 μM. The LLIM can monitor the dynamics of Ch in the cortex of the rat brain by both local microinfusion and intraperitoneal injection of Ch. This work first demonstrates that the LLIM can be successfully applied in the brain and obtain electrochemical signals in such a sophisticated system, allowing one new perspective of sensing at the liquid/liquid interface for nonelectrically active substances in vivo to understand the physiological function of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.1c00978DOI Listing

Publication Analysis

Top Keywords

redox-inactive neurochemicals
12
rat brain
12
neurochemicals rat
8
liquid/liquid interface
8
llim monitor
8
brain
6
vivo detection
4
detection redox-inactive
4
brain ion
4
ion transfer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!