A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temporal Evolution of Microscopic Structure and Functionality during Crystallization of Amorphous Indium-Based Oxide Films. | LitMetric

Understanding the crystallization mechanism of amorphous metal-oxide thin films remains of importance to avoid the deterioration of multifunctional flexible electronics. We derived the crystallization mechanism of indium-based functional amorphous oxide films by using in situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. Crystallization begins with surface nucleation, especially at low annealing temperatures, and proceeds simultaneous nucleation and growth in the bulk. Three-dimensional crystal growth in the film was observed when the crystallite size was sufficiently smaller than the film thickness. When the growing crystallites reached the film surface, the crystallization was dominated by two- or lower-dimensional growth. Such crystallization can be explained within the framework of the modified Avrami theory and can be varied for tailoring the electrical properties of the amorphous InO film. After tailoring the film crystallinity and crystallite size, the carrier mobility was improved to >100 cm/V·s in 30 min. Our results show that a carrier mobility of >90 cm/V·s can be implemented for the InO film with a crystallinity of >40% and a crystallite size of >70 nm by an optimized annealing process. The incorporation of Ga element into amorphous InO films obviously increases the activation energy of nucleation and migration. In contrast, Sn dopants can promote the crystal growth. This is attributed to two kinds of migration mechanisms during the annealing in air, one of which is the dominant migration mechanism of oxygen interstitials in crystallized indium-tin oxide (ITO) films and the other dominated by oxygen vacancies in InO and IGO films. Combining the modified Avrami theory with TEM observations, we predicted the structural evolution kinetics for indium-based amorphous oxide films and gained new insights for understanding the temporal structure-functionality relationship during crystallization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05706DOI Listing

Publication Analysis

Top Keywords

oxide films
12
crystallite size
12
crystallization mechanism
8
amorphous oxide
8
crystal growth
8
modified avrami
8
avrami theory
8
amorphous ino
8
ino film
8
film crystallinity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!