Ionizing irradiation induces positive or negative changes in plant growth (M1) depending on the amount of irradiation applied to seeds or plant parts. The effect of 50-350 Gy gamma irradiation of kernels on nucleolar activity, as an indicator of metabolic activity, in root tip cells of tetraploid wheat Triticum turgidum ssp. durum L. cv. Orania (AABB) was investigated. The number of nucleoli present in nuclei and micronuclei as well as the mitotic index in the different irradiation dosages was used as an indicator of the cells entering mitosis, the chromosomes with nucleolar organizer regions that are active as well as chromosome doubling in the event of unsuccessful mitotic division. Nucleolar activity was investigated from 17.5 to 47.5 h after the onset of imbibition to study the first mitotic division and its consequences on the cells that were in G and G phases at the time of gamma irradiation. Untreated material produced a maximum of four nucleoli formed by the nucleolar organizing regions (NORs) on chromosomes 1B and 6B. In irradiated material, additional nucleoli were noted that are due to the activation of the NORs on chromosome 1A in micronuclei. The onset of mitosis was highly significantly retarded in comparison to the control due to checkpoints in the G phase for the repairing of damaged DNA. This study is the first to report on the appearance of nucleoli in micronuclei as well as activation of NORs in the micronuclei that are inactive in the nucleus and the effect of chromosome doubling on nucleolar activity in the event of unsuccessful mitotic division.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-021-01684-4DOI Listing

Publication Analysis

Top Keywords

nucleolar activity
16
gamma irradiation
12
mitotic division
12
activity root
8
root cells
8
cells tetraploid
8
triticum turgidum
8
turgidum ssp
8
ssp durum
8
micronuclei well
8

Similar Publications

Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.

View Article and Find Full Text PDF

Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunit is eukaryotic translation initiation factor-6 (eIF6). Release of eIF6 from the 60S subunit is essential to permit 60S interactions with the 40S subunit.

View Article and Find Full Text PDF

Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.

Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence.

View Article and Find Full Text PDF

Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells (Farley-Barnes, 2018). After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!