Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gaab043DOI Listing

Publication Analysis

Top Keywords

subcortical maternal
8
maternal complex
8
oocyte embryo
8
complex
4
complex emerging
4
emerging roles
4
roles novel
4
novel perspectives
4
perspectives discovery
4
discovery subcortical
4

Similar Publications

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.

View Article and Find Full Text PDF

Background: The KHDC3L gene encodes a component of the subcortical maternal complex (SCMC). Biallelic mutations in this gene cause 5%-10% of biparental hydatidiform moles (BiHM), and a few maternal deletions in KHDC3L have been identified in women with recurrent pregnancy loss (RPL).

Method: In this study, we had a patient with a history of 10 pregnancy or neonatal losses, including spontaneous abortions, neonatal deaths, and molar pregnancy.

View Article and Find Full Text PDF

Importance: Maternal tobacco use during pregnancy (MTDP) remains a major public health challenge. However, the complete spectrum of effects of MTDP is not fully understood.

Objectives: To examine the longitudinal associations of MTDP and children's brain morphometric subcortical volume and gray-white matter contrast (GWC) development.

View Article and Find Full Text PDF

Elucidating Microstructural Alterations in Neurodevelopmental Disorders: Application of Advanced Diffusion-Weighted Imaging in Children With Rasopathies.

Hum Brain Mapp

December 2024

Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA.

Neurodevelopmental disorders (NDDs) can severely impact functioning yet effective treatments are limited. Greater insight into the neurobiology underlying NDDs is critical to the development of successful treatments. Using a genetics-first approach, we investigated the potential of advanced diffusion-weighted imaging (DWI) techniques to characterize the neural microstructure unique to neurofibromatosis type 1 (NF1) and Noonan syndrome (NS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!