Colored compounds formed by the Maillard reaction of carnosine with xylose or glucose were investigated in this study. Yellow pigments showing an absorption maximum at 450 nm were found in a heated solution of carnosine with xylose at pH 5.0. These pigments were then isolated and identified as dicarnosyl-dipyrrolones A and B. The generation of dipyrrolones in the absence of lysine suggests that dipyrrolone pigments can be formed by pentose as well as every amino compound such as amino acids, peptides and proteins possessing a free amino group. Analysis of α-dicarbonyls using LC-MS/MS showed that pentosone, 1-deoxypentosone, 3-deoxypentosone (3-DP), and methylglyoxal were predominantly generated via degradation of Amadori compounds. Also, a potential formation pathway of dypyrrolones was established, indicating that an Amadori compound that could form 3-DP is likely to play a role as a main precursor for dipyrrolones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbab119 | DOI Listing |
Biosci Biotechnol Biochem
August 2021
Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
Colored compounds formed by the Maillard reaction of carnosine with xylose or glucose were investigated in this study. Yellow pigments showing an absorption maximum at 450 nm were found in a heated solution of carnosine with xylose at pH 5.0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!