A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbiome response differs among selected lines of Sydney rock oysters to ocean warming and acidification. | LitMetric

Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome; however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for 4 weeks. The haemolymph bacterial microbiome was characterized using 16S rRNA (V3-V4) gene sequencing and varied among oyster lines in the control (ambient pCO2, 24°C) treatment. Microbiomes were also altered by climate change dependent on oyster lines. Bacterial α-diversity increased in response to elevated pCO2 in two selected lines, while bacterial β-diversity was significantly altered by combinations of elevated pCO2 and temperature in four selected lines. Climate change treatments caused shifts in the abundance of multiple amplicon sequence variants driving change in the microbiome of some selected lines. We show that oyster genetic background may influence the Sydney rock oyster haemolymph microbiome under climate change and that future assisted evolution breeding programs to enhance resilience should consider the oyster microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiab099DOI Listing

Publication Analysis

Top Keywords

climate change
20
selected lines
16
sydney rock
12
elevated pco2
12
lines sydney
8
oyster
8
altered climate
8
oyster microbiome
8
rock oyster
8
ambient pco2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!