Objectives: To standardize and validate an in-house RT-LAMP test for the detection of SARS-CoV-2, based on laboratory and field assays using samples from COVID-19 suspected patients.

Materials And Methods: An in-house SARS-CoV-2 RT-LAMP molecular test was standardized, establishing the detection limit with Vero cells of isolated Peruvian strains of SARS-CoV-2, and the robustness to various concentrations of primers. The laboratory validation was performed with 384 nasal and pharyngeal swab samples (UFH) obtained between March and July 2020. The field validation was performed with 383 UFH obtained from COVID-19 suspected symptomatic cases. All samples were tested by RT-LAMP and RT-qPCR. The RT-qPCR was considered as the reference standard test. The concordance measures and diagnostic performance were calculated.

Results: The detection limit was consistent in cases with Ct <30 in both tests, showing efficiency to detect up to 1000 copies/μL of the target gene. Robustness was evidenced with half of the primer concentrations and 20 μL of final volume. Absence of amplification was identified for other HCoVs. Concordance showed a kappa index of 0.88 (95% CI: 0.83-0.93) and 0.89 (95% CI: 0.84 - 0.94) in laboratory and field settings, respectively. The sensitivity value in the laboratory was 87.4% (95% CI: 80.8 - 92.4) and 88.1% in the field (95% CI: 81.6 - 92.9). The specificity value in both settings was 98.8% (95% CI: 96.4-99.7).

Conclusions: The in-house SARS-CoV-2 RT-LAMP test was successfully validated based on its adequate robustness, no cross-reactions, good concordance, and diagnostic performance compared to RT-qPCR.

Download full-text PDF

Source
http://dx.doi.org/10.17843/rpmesp.2021.381.7154DOI Listing

Publication Analysis

Top Keywords

rt-lamp molecular
8
molecular test
8
covid-19 suspected
8
detection limit
8
validation performed
8
standardization validation
4
validation house
4
rt-lamp
4
house rt-lamp
4
test
4

Similar Publications

Background: This study seeks to close this divide by assessing the occurrence of Toxoplasma gondii (T. gondii) in the brain tissues of pet birds displaying neurological symptoms, utilizing Nested Polymerase Chain Reaction (PCR) and Loop-mediated Isothermal Amplification (LAMP) methods. Furthermore, it aims to evaluate and contrast the sensitivity and specificity of different diagnostic procedures.

View Article and Find Full Text PDF

Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years.

View Article and Find Full Text PDF

A novel ready-to-use loop-mediated isothermal amplification (LAMP) method for detection of Burkholderia mallei and B. pseudomallei.

BMC Microbiol

January 2025

Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.

Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Recent advances in rapid detection of Helicobacter pylori by lateral flow assay.

Arch Microbiol

January 2025

Department of Laboratory Medicine, Jinan Second People's Hospital of Shandong Province (Jinan Eye Hospital), No. 148, Jingyi Road, Jinan, 250022, Shandong, China.

Infection with H. pylori (Helicobacter pylori) is the most prevalent human infection worldwide and is strongly associated with many gastrointestinal disorders, including gastric cancer. Endoscopy is mainly used to diagnose H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!