Climate change has already altered global biodiversity, causing the migration of species and changes in habitat distribution. To implement a sustainable conservation strategy, it is necessary to understand the impacts of climate change on species. Lessingianthus is a South American genus that includes numerous endangered species, some of which grow in the Brazilian Cerrado, a Neotropical savanna considered a world's biodiversity hotspot. However, the impact of global climate change on these species has still not been estimated. We evaluate the effect of climate change on the habitat of 10 threatened Lessingianthus species and on their potential distribution, and assess the effectiveness of current protected areas (PAs) using ecological niche models. Based on the maximum entropy algorithm (Maxent), we first modeled the potential distribution of these species under current climatic conditions and then projected the distribution for two future scenarios of climate change (RCP 4.5 and RCP 8.5) and two time periods (2050 and 2070). We predicted current habitat suitability and identified suitable bioclimatic variables for these species. Our findings suggest that the area comprising the south and southeast of Cerrado is irreplaceable and the most biotically stable region for these endangered species; therefore, it should be considered a conservation priority area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202120190796 | DOI Listing |
J Phycol
January 2025
Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon, USA.
Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
NewClimate Institute, Cologne, Germany.
Globally, more than 100 countries have adopted net-zero targets. Most studies agree on how this increases the chance of keeping end-of-century global warming below 2°C. However, they typically make assumptions about net-zero targets that do not capture uncertainties related to gas coverage, sector coverage, sinks, and removals.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Kísérletes Kardiológiai és Sebészeti Műtéttani Tanszék Budapest, Nagyvárad tér 4., 1089 Magyarország.
Bioinformatics
January 2025
Biocomputing Group, University of Bologna, Italy.
Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.
Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.
Am J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!