To address challenges associated with the increased prevalence of novel psychoactive substances (NPSs), laboratories often adopt new techniques or new methods with the goal of obtaining more detailed chemical information with a higher level of confidence. To demonstrate how new methods applied to existing techniques can be a viable approach, a targeted gas chromatography mass spectrometry (GC-MS) method for synthetic cathinones was developed. To create the method, a range of GC-MS parameters were first investigated using a seven-component test solution with the goal of minimizing compounds with overlapping acceptance windows by maximizing retention time differences within a reasonable runtime. Once developed, the targeted method was evaluated through several studies and was compared to a general GC-MS confirmatory method. The method produced a twofold increase in retention time differences of the test solution compounds with a 3.83-min shorter runtime than the general method. Limitations of the method were also studied by analyzing an additional forty-eight cathinones to identify instances where definitive compound identification may not be possible due to overlapping acceptance windows and mass spectra. Thirty-eight pairs of compounds had retention times differences of less than 2% and, of those thirty-eight, one pair had indistinguishable mass spectra. A set of case samples were also analyzed using the method to evaluate suitability for casework. An increase in split ratio was required to obtain acceptable sensitivity. The development of this method is part of a larger project to measure benefits and drawbacks of different drug chemistry workflows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010760PMC
http://dx.doi.org/10.1111/1556-4029.14789DOI Listing

Publication Analysis

Top Keywords

method
10
targeted gas
8
gas chromatography
8
chromatography mass
8
mass spectrometry
8
spectrometry gc-ms
8
gc-ms method
8
test solution
8
overlapping acceptance
8
acceptance windows
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!