The discovery of ferroelectricity in polycrystalline thin films of doped HfO2 has reignited the expectations of developing competitive ferroelectric non-volatile memory devices. To date, it is widely accepted that the performance of HfO2-based ferroelectric devices during their life cycle is critically dependent on the presence of point defects as well as structural phase polymorphism, which mainly originates from defects either. The purpose of this review article is to overview the impact of defects in ferroelectric HfO2 on its functional properties and the resulting performance of memory devices. Starting from the brief summary of defects in classical perovskite ferroelectrics, we then introduce the known types of point defects in dielectric HfO2 thin films. Further, we discuss main analytical techniques used to characterize the concentration and distribution of defects in doped ferroelectric HfO2 thin films as well as at their interfaces with electrodes. The main part of the review is devoted to the recent experimental studies reporting the impact of defects in ferroelectric HfO2 structures on the performance of different memory devices. We end up with the summary and perspectives of HfO2-based ferroelectric competitive non-volatile memory devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr01260fDOI Listing

Publication Analysis

Top Keywords

memory devices
16
defects ferroelectric
12
thin films
12
ferroelectric hfo2
12
defects
8
non-volatile memory
8
hfo2-based ferroelectric
8
point defects
8
impact defects
8
performance memory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!