Paradoxical response of pulmonary slowly adapting units during constant pressure lung inflation.

Am J Physiol Regul Integr Comp Physiol

Department of Medicine, University of Louisville, Louisville, Kentucky and Robley Rex VA Medical Center, Louisville, Kentucky.

Published: August 2021

Typically, unit discharge of slowly adapting receptors (SARs) declines slowly when lung inflation pressure is constant, although in some units it increases instead-a phenomenon hereinafter referred to as creeping. These studies characterize creeping behavior observed in 62 of 137 SAR units examined in anesthetized, open-chest, and mechanically ventilated rabbits. SAR units recorded from the cervical vagus nerve were studied during 4 s of constant lung inflation at 10, 20, and 30 cmHO. Affected SAR units creep more quickly as inflation pressure increases. SAR units also often deactivate after creeping, i.e., their activity decreases or stops completely. Creeping likely results from encoder switching from a low discharge to a high discharge SAR, because it disappears in SAR units with multiple receptive fields after blocking a high discharge encoder in one field leaves low discharge encoders intact. The results support that encoder switching is a common mechanism operating in lung mechanosensory units.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409913PMC
http://dx.doi.org/10.1152/ajpregu.00116.2021DOI Listing

Publication Analysis

Top Keywords

sar units
20
lung inflation
12
slowly adapting
8
units
8
inflation pressure
8
encoder switching
8
low discharge
8
high discharge
8
sar
6
discharge
5

Similar Publications

ticks are the main hematophagous ectoparasites of camels, harboring a variety of microbes that can affect tick vector competence and pathogen transmission. To better understand the tick microbiome influenced by sex and host habitat, we analyzed the bacterial community of male and female ticks collected from camel farms, livestock markets, and slaughterhouses, representing the range of major habitats in the UAE, by sequencing the 16S rRNA gene. Tick samples were collected during 2022 and 2023.

View Article and Find Full Text PDF

A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.

Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped.

View Article and Find Full Text PDF

Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.

View Article and Find Full Text PDF

Methane, the major component of natural and shale gas, is a significant carbon source for chemical synthesis. The direct partial oxidation of methane to liquid oxygenates under mild conditions is an attractive pathway, but the molecule's inertness makes it challenging to achieve simultaneously high conversion and high selectivity towards a single target product. This difficulty is amplified when aiming for more valuable products that require C-C coupling.

View Article and Find Full Text PDF

Theoretical insights into spacer molecule design to tune stability, dielectric, and exciton properties in 2D perovskites.

Nanoscale

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China.

Two-dimensional organic-inorganic perovskites have garnered extensive interest owing to their unique structure and optoelectronic performance. However, their loose structures complicate the elucidation of mechanisms and tend to cause uncertainty and variations in experimental and calculated results. This can generally be rooted in dynamically swinging spacer molecules through two mechanisms: one is the intrinsic geometric steric effect, and the other is related to the electronic effect orbital overlapping and electronic screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!