Mucopolysaccharidoses type I gene therapy.

J Inherit Metab Dis

Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.

Published: September 2021

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525653PMC
http://dx.doi.org/10.1002/jimd.12414DOI Listing

Publication Analysis

Top Keywords

gene therapy
16
aav vectors
12
mucopolysaccharidoses type
8
gene
6
vectors
6
type gene
4
therapy
4
therapy mucopolysaccharidoses
4
type mps
4
mps inherited
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.

View Article and Find Full Text PDF

Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy.

J Muscle Res Cell Motil

January 2025

Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.

Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin.

View Article and Find Full Text PDF

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!