Among different types of mechanisms involved in neurological disorders, neuroinflammation links initial insults to secondary injuries and triggers some chronic outcomes, for example, neurodegenerative disorders. Thus, anti-inflammatory substances can be targeted as a novel therapeutic option for translational and clinical research to improve brain disease outcomes. In this review, we propose to introduce a new insight into the anti-inflammatory effects of mesenchymal stem cells (MSCs) as the most frequent source for stem cell therapy in neurological diseases. Our insight incorporates a bystander effect of these stem cells in modulating inflammation and microglia/macrophage polarization through exosomes. Exosomes are nano-sized membrane vesicles that carry cell-specific constituents, including protein, lipid, DNA, and RNA. microRNAs (miRNAs) have recently been detected in exosomes that can be taken up by other cells and affect the behavior of recipient cells. In this article, we outline and highlight the potential use of exosomal miRNAs derived from MSCs for inflammatory pathways in the context of neurological disorders. Furthermore, we suggest that focusing on exosomal miRNAs derived from MSCs in the course of neuroinflammatory pathways in the future could reveal their functions for diverse neurological diseases, including brain injuries and neurodegenerative diseases. It is hoped that this study will contribute to a deep understanding of stem cell bystander effects through exosomal miRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30495 | DOI Listing |
Stem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFJ Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFNat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
Commun Biol
January 2025
Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!