Background: Recently, it has become possible to analyze implant placement position using the digital matching data of optical impression data of the oral cavity or plaster models with cone beam computed tomography (CBCT) data, and create a highly accurate surgical guide. It has been reported that CBCT measurements were smaller than the actual values, termed shrinkage. Matching of digital data is reliable when the plaster model or intraoral impression values show shrinkage at the same rate as the CBCT data. However, if the shrinkage rate is significantly different, the obtained digital data become unreliable. To clarify digital matching reliability, we examined dimensional reproducibility and shrinkage in measurements obtained with a model scanner, intra-oral scanner (iOS), and CBCT.
Materials And Methods: Three implants that were arranged in a triangle were fixed in an acrylic plate. The distance between each implants were measured using model scanner, iOS, and CBCT. The actual size measured by electronic caliper was regarded as control.
Results: All values measured with CBCT were significantly smaller than that of model scanner, iOS, and control (p<0.001). The model scanner shrinkage was 0.37-0.39%, iOS shrinkage was 0.9-1.4%, and CBCT shrinkage was 1.8-6.9%. There were statistically significant differences among the shrinkage with iOS, CBCT, and model scanner (p<0.001).
Conclusion: Our findings showed that all measurements obtained with those modalities showed shrinkage as compared to the actual values. In addition, CBCT shrinkage was largest among three different measuring methods. They indicated that data matching between CBCT and scanner measurements requires attention in regard to the reliability of values obtained with those devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241962 | PMC |
http://dx.doi.org/10.1186/s40729-021-00343-w | DOI Listing |
Purpose: To create tridimensional (3D) anatomical models of diaphyseal fractures in dogs (3D AMDFD) and to evaluate the models from their radiographs.
Methods: The study consisted of six stages: preparation of femur from a healthy dog cadaver; digitalization of the bone through a 3D scanner and creation of the base model; creation of a 3D AMDFD based on the image of the base model, 3D modeling carried out to reproduce five different types of diaphyseal fractures; printing the models produced on a 3D printer with a thermoplastic material; insertion of neodymium magnets in the fracture line to allow the assembly and disassembly of the parts; and radiography of 3D AMDFD in lateromedial and craniocaudal positions.
Results: The base model and 3D AMDFD had high precision in the replication of bone structures, like the bone in natura.
Radiat Environ Biophys
January 2025
Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat, Morocco.
This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Duke University Hospital, 2301 Erwin Rd, Box 3808, Durham, NC 27701 (B.W.T., K.R.K., B.C.A., S.P.T., D.E.K., B.H., M.R.B., D.M., E.S., E.A.); Department of Biostatistics and Bioinformatics (N.F., S.M., A.E.) and Department of Medical Physics (W.P.S., E.S., E.A.), Duke University, Durham, NC.
Background Detection of hepatic metastases at CT is a daily task in radiology departments that influences medical and surgical treatment strategies for oncology patients. Purpose To compare simulated photon-counting CT (PCCT) with energy-integrating detector (EID) CT for the detection of small liver lesions. Materials and Methods In this reader study (July to December 2023), a virtual imaging framework was used with 50 anthropomorphic phantoms and 183 generated liver lesions (one to six lesions per phantom, 0.
View Article and Find Full Text PDFJ Dent Sci
December 2024
School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Spacing between teeth is a common trait across different stages of dentition. With the tide of the digital impression, the scanning trueness of the intraoral scanner (IOS) is a hot subject. This study aimed to determine the correlation between the level of the spaced dentition and trueness of the intraoral scanning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!