Effects of photoperiod and light intensity on milk production and milk composition of dairy cows in automatic milking system.

J Anim Sci Technol

Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.

Published: May 2021

The purpose of this study was to determine the effects of photoperiod and light intensity on milk production, milk composition, hormones levels and blood metabolites indices of Korean Holstein dairy cows in automatic milking system (AMS). A total of 24 Holstein dairy cows were selected and used to four subsequent treatments for the experimental periods of 60 days. The light programs consisted of (1) Control: the natural photoperiod with 14.2 h of the light period and 9.4 h of the dark period (below 10 Lux); (2) T1: 16 h of the long day photoperiod (LDPP) with 50 Lux of light; (3) T2: 16 h of LDPP with 100 Lux of light; and (4) T3: 16 h of LDPP with 200 Lux of light, respectively. Importantly, there was a significant difference in the thurl activity of dairy cows between the different light intensity programs ( < 0.05). Milk yield was higher in T1 and T2 (40.80 ± 1.71 and 39.90 ± 2.02 kg/d, respectively) than those of Control and T3 (32.18 ± 1.51 and 35.76 ± 2.80 kg/d, respectively) ( < 0.05), but DMI was lower in T1, T2, and T3 compared to Control ( < 0.05). Also, milk fat percentage, the contents of milk fat and total solids were higher in T2 than those in the others ( < 0.05). The average daily melatonin level in milk was high to T3 (28.20 ± 0.43 pg/mL), T2 (24.62 ± 0.32 pg/mL), T1 (19.78 ± 0.35 pg/mL), and Control (19.36 ± 0.45 pg/mL) in order ( < 0.05). Also, the cortisol levels in milk and blood were lower in treatment groups than in Control ( < 0.05). The results of this study showed that it will be effective to improve the milk yield and milk composition, and to reduce the stress of dairy cows when the light conditions regulate to extend the photoperiod to 16 h at a light emitting diode (LED) intensity of 100 Lux under the AMS in dairy farm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204001PMC
http://dx.doi.org/10.5187/jast.2021.e59DOI Listing

Publication Analysis

Top Keywords

dairy cows
20
photoperiod light
12
light intensity
12
milk composition
12
lux light
12
milk
11
light
10
effects photoperiod
8
intensity milk
8
milk production
8

Similar Publications

Investigating the reassortment potential and pathogenicity of the S segment in Akabane virus using a reverse genetics system.

BMC Vet Res

January 2025

Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.

Background: Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle.

View Article and Find Full Text PDF

Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.

View Article and Find Full Text PDF

Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.

Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.

View Article and Find Full Text PDF

Climate change has caused heat stress (HS) to become an increasingly severe problem for high-producing dairy herds. Although cooling systems allow milk production to remain nearly constant throughout the year, fertility decreases during summer. Physiological counter-current heat transfer mechanisms maintaining brain/hypothalamic and reproductive functions in cattle are vulnerable to HS.

View Article and Find Full Text PDF

Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in Macaques.

Nature

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.

Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!