Understanding and predicting the effect of global change phenomena on biodiversity is challenging given that biodiversity data are highly multivariate, containing information from tens to hundreds of species in any given location and time. The Latent Dirichlet Allocation (LDA) model has been recently proposed to decompose biodiversity data into latent communities. While LDA is a very useful exploratory tool and overcomes several limitations of earlier methods, it has limited inferential and predictive skill given that covariates cannot be included in the model. We introduce a modified LDA model (called LDAcov) which allows the incorporation of covariates, enabling inference on the drivers of change of latent communities, spatial interpolation of results, and prediction based on future environmental change scenarios. We show with simulated data that our approach to fitting LDAcov is able to estimate well the number of groups and all model parameters. We illustrate LDAcov using data from two experimental studies on the long-term effects of fire on southeastern Amazonian forests in Brazil. Our results reveal that repeated fires can have a strong impact on plant assemblages, particularly if fuel is allowed to build up between consecutive fires. The effect of fire is exacerbated as distance to the edge of the forest decreases, with small-sized species and species with thin bark being impacted the most. These results highlight the compounding impacts of multiple fire events and fragmentation, a scenario commonly found across the southern edge of Amazon. We believe that LDAcov will be of wide interest to scientists studying the effect of global change phenomena on biodiversity using high-dimensional datasets. Thus, we developed the R package LDAcov to enable the straightforward use of this model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216892 | PMC |
http://dx.doi.org/10.1002/ece3.7626 | DOI Listing |
Heliyon
January 2025
Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Upstream Lab, MAP, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.
Hypertension is one of the most important chronic diseases worldwide. Hypertension is a critical condition encountered frequently in daily life, forming a significant area of service in Primary Health Care (PHC), which healthcare professionals often confront. It serves as a precursor to many critical illnesses and can lead to fatalities if not addressed promptly.
View Article and Find Full Text PDFSci Rep
January 2025
School of New Media, Peking University, Beijing, China.
This paper intends to solve the limitations of the existing methods to deal with the comments of tourist attractions. With the technical support of Artificial Intelligence (AI), an online comment method of tourist attractions based on text mining model and attention mechanism is proposed. In the process of text mining, the attention mechanism is used to calculate the contribution of each topic to text representation on the topic layer of Latent Dirichlet Allocation (LDA).
View Article and Find Full Text PDFJ Med Internet Res
January 2025
College of Nursing Science, Kyung Hee University, Seoul, Republic of Korea.
Background: Emerging infectious disease disasters receive extensive media coverage and public attention. Nurse burnout and attrition peak during health crises such as pandemics. However, there is limited research on nursing issues related to repeated emerging infectious disease crises over time.
View Article and Find Full Text PDFSci Rep
December 2024
Department of CSE, Adama Science and Technology University, Oromia, Ethiopia.
Afaan Oromo is a resource-scarce language with limited tools developed for its processing, posing significant challenges for natural language tasks. The tools designed for English do not work efficiently for Afaan Oromo due to the linguistic differences and lack of well-structured resources. To address this challenge, this work proposes a topic modeling framework for unstructured health-related documents in Afaan Oromo using latent dirichlet allocation (LDA) algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!