The parasitic salmon louse represents one of the biggest challenges to environmentally sustainable salmonid aquaculture across the globe. This species also displays a high evolutionary potential, as demonstrated by its rapid development of resistance to delousing chemicals. In response, farms now use a range of non-chemical delousing methods, including cleaner fish that eat lice from salmon. Anecdotal reports suggest that in regions where cleaner fish are extensively used on farms, lice have begun to appear less pigmented and therefore putatively less visible to cleaner fish. However, it remains an open question whether these observations reflect a plastic (environmental) or adaptive (genetic) response. To investigate this, we developed a pigment scoring system and conducted complimentary experiments which collectively demonstrate that, a) louse pigmentation is strongly influenced by environmental conditions, most likely light, and b) the presence of modest but significant differences in pigmentation between two strains of lice reared under identical conditions. Based on these data, we conclude that pigmentation in the salmon louse is strongly influenced by environmental conditions, yet there are also indications of underlying genetic control. Therefore, lice could display both plastic and adaptive responses to extensive cleaner fish usage where visual appearance is likely to influence survival of lice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216962 | PMC |
http://dx.doi.org/10.1002/ece3.7618 | DOI Listing |
Heliyon
December 2024
Centre for Settlements Studies, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Aquat Toxicol
December 2024
Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan.
The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, United States; U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME, United States.
The ubiquitous occurrence and persistence of per- and polyfluoroalkyl substances (PFAS) in all environmental matrices and biota poses significant health risks to humans. Fish consumption is one of the main pathways humans are exposed to PFAS, yet general patterns in factors influencing PFAS content in fish fillets remain unknown. We assembled information on PFAS content (total quantified PFAS, PFOS, PFOA, and others) in fish fillets to assess the effect of fish origin (marine, freshwater, wild, or farmed), fillet type (skin-on or skin-off), and lipid content on PFAS variation across environments at a global scale.
View Article and Find Full Text PDFPrev Vet Med
February 2025
Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås N-1433, Norway.
Salmon lice (Lepeophtheirus salmonis) are parasites on salmonid fish and a density-dependent constraint to the sustainable farming of salmonids in open net pens. To control the parasites, fish farmers in Norway are required to count the number of salmon lice in different developmental stages on a subset of the fish each week. Furthermore, they must ensure that the number of adult female lice per fish does not increase beyond a specified threshold level.
View Article and Find Full Text PDFJ Fish Dis
December 2024
Marine Microbial Pathogenesis and Vaccinology Lab, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
Seafood is an important resource for global nutrition and food security, with both land and marine aquaculture playing pivotal roles. High visual acuity is key for health and survival of farmed, cultured, and wild fish. Cleaner fish technology to control parasite infestation has become important in marine aquaculture and highlights the importance of visual acuity in the efficacy of cleaner fish species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!