Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Results: This study developed mole detection and segmentation software DiaMole using mobile phone images. DiaMole utilized multiple deep learning algorithms for the object detection problem and mole segmentation problem. An object detection algorithm generated a rectangle tightly surrounding a mole in the mobile phone image. Moreover, the segmentation algorithm detected the precise boundary of that mole. Three deep learning algorithms were evaluated for their object detection performance. The popular performance metric mean average precision (mAP) was used to evaluate the algorithms. Among the utilized algorithms, the Faster R-CNN could achieve the best mAP = 0.835, and the integrated algorithm could achieve the mAP = 0.4228. Although the integrated algorithm could not achieve the best mAP, it can avoid the missing of detecting the moles. A popular Unet model was utilized to find the precise mole boundary. Clinical users may annotate the detected moles based on their experiences.
Conclusions: DiaMole is user-friendly software for researchers focusing on skin lesions. DiaMole may automatically detect and segment the moles from the mobile phone skin images. The users may also annotate each candidate mole according to their own experiences. The automatically calculated mole image masks and the annotations may be saved for further investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195635 | PMC |
http://dx.doi.org/10.1155/2021/6698176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!