Barrier devices during COVID-19 pandemic - The need of the hour!

Saudi J Anaesth

Vice Chair, Global Health Committee, Faculty of Public Health, Independent Consultant Public Health, Honorary Senior Lecturer, Imperial College London, London, United Kingdom.

Published: April 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191239PMC
http://dx.doi.org/10.4103/sja.sja_1170_20DOI Listing

Publication Analysis

Top Keywords

barrier devices
4
devices covid-19
4
covid-19 pandemic
4
pandemic hour!
4
barrier
1
covid-19
1
pandemic
1
hour!
1

Similar Publications

Burn injuries in patients with significant pre-existing medical conditions provide unique challenges in both medical management and surgical planning. Spasticity, if left untreated, can be one of the most disabling consequences of a neurologic injury. Treatment is largely dependent on pharmacologic management with anti-spasmodic agents such as baclofen.

View Article and Find Full Text PDF

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN/metal interfaces.

Nanoscale Horiz

January 2025

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.

View Article and Find Full Text PDF

Favorable Contact with Low Interfacial Resistance for n-Type TiCoSb-Based Thermoelectric Devices.

ACS Appl Mater Interfaces

January 2025

CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.

In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.

View Article and Find Full Text PDF

Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!