The Northern Murray-Darling Basin (MDB) is a key Australian agricultural region requiring efficient Agricultural Drought Management (ADM), focused on resilience. Although a need for resilience in local farming communities has long been recognised, previous studies assessing ADM in the Northern MDB did not consider two key elements of resilient management: proactivity (preparing for drought prior to a drought event) and suitability (localised drought management targeted at decision-makers). This study assessed the current ADM Strategy (ADMS) implemented within five selected Northern MDB Local Government Areas (LGAs) (Paroo Shire, Balonne Shire, Murweh Shire, Maranoa Region, and Goondiwindi Region), specifically investigating the extent of ADMS proactivity, effectiveness, and suitability. To investigate suitability, drought risk extent of each LGA was determined. A region-specific drought risk index consisting of hazard, vulnerability and exposure indices was developed; risk mapping was conducted. All LGAs displayed very high levels of drought risk due to hazardous climatic conditions, vulnerable socio-economic attributes, and drought-exposed geographical features. A Criteria-Based Ranking (CBR) survey produced a quantitative effectiveness and proactivity rank for each major ADMS used in the Northern MDB. Government Assistance was the most proactive and effective ADMS. Strategy effectiveness ranks of the major ADMS used and drought risk extent found in each LGA were correlated to determine ADMS suitability. Overall, Balonne Shire and the Goondiwindi Region were identified as high priority areas requiring improved ADM. A user-centred Integrated Early Warning System (I-EWS) for drought could potentially increase ADM proactivity and suitability in such areas, strengthening drought resilience of farming communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221744 | PMC |
http://dx.doi.org/10.1007/s11069-021-04884-6 | DOI Listing |
BMJ Glob Health
January 2025
Population Council, Nairobi, Kenya.
Introduction: Climate change is shaping adolescent and young people's (AYP) transitions to adulthood with significant and often compounding effects on their physical and mental health. The climate crisis is an intergenerational inequity, with the current generation of young people exposed to more climate events over their lifetime than any previous one. Despite this injustice, research and policy to date lacks AYP's perspectives and active engagement.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Wildland fires constitute a major source of ambient fine particulate matter (PM), significantly impacting air quality and public health. As the climate becomes warmer and drier, fire frequency is projected to rise, yet how the associated health impacts of fire-sourced PM (FPM) respond to climate change remains vague. In this study, we modeled the global concentration and associated premature deaths of FPM over the past two decades.
View Article and Find Full Text PDFSci Total Environ
January 2025
Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, Chile.
World forests are experiencing significant modification due to the confluence of climate change and deforestation, with Mediterranean forests facing particularly acute threats. The Chilean Sclerophyllous Mediterranean Forest is considered a world biodiversity hotspot, a restricted ecosystem type that is highly affected by global change drivers. Despite the high ecological and environmental importance of this ecosystem, an integrated assessment of its risk derived from climate and land-use change is lacking.
View Article and Find Full Text PDFSci Rep
January 2025
European Union Disaster Risk Management Consultant, Ambo, Ethiopia.
In recent decades, the global climate has changed mainly due to human-induced causes and realizing their manifestations in the forms of extreme events such as droughts, floods, heat stress, and variability in rainfall. Arid and semi-arid ecosystems are sensitive to changes in climate variability, including the Borana zone. This study was therefore initiated to assess how vulnerable pastoral and agro-pastoral livelihoods are to climate change, as well as to estimate the effects, and pinpoint potential response measures that could be implemented in the study area.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!