Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus.

NPJ Syst Biol Appl

Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.

Published: June 2021

Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using MEMOTE, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241996PMC
http://dx.doi.org/10.1038/s41540-021-00188-4DOI Listing

Publication Analysis

Top Keywords

aureus strains
12
genome-scale metabolic
8
metabolic models
8
aureus
8
staphylococcus aureus
8
multi-drug resistant
8
novel targets
8
targets antimicrobial
8
gems multiple
8
models
5

Similar Publications

Comparison of taurolidine with 4% ethylenediaminetetraacetic acid on antimicrobial lock effectiveness: An experimental study.

JPEN J Parenter Enteral Nutr

January 2025

3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Medical Faculty in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.

Background: Antimicrobial lock therapy is recommended for preventing and treating catheter-related bloodstream infections, but different solutions have uncertain efficacy.

Methods: Two locks, 1.35% taurolidine and 4% ethylenediaminetetraacetic acid (EDTA), were tested on Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S.

View Article and Find Full Text PDF

Construction and bacteriostatic effect analyses of a recombinant thermostable Newcastle disease virus expressing cecropin AD.

Vet Microbiol

January 2025

Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:

Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.

View Article and Find Full Text PDF

Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S.

View Article and Find Full Text PDF

Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!