Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to compare the predictive performance of ridge regression best linear unbiased prediction-method 6 (rrBLUPm6) with well-known genomic selection methods (rrBLUP, GBLUP and BayesA) in terms of accuracy of prediction, computing time and memory requirement. The impact of the genetic architecture and heritability on the accuracy of genomic evaluation was also studied. To this end, a genome was simulated which consisted of five chromosomes, one Morgan each, on which 5000 biallelic singlenucleotide polymorphisms (SNP) were distributed. Prediction of genomic breeding values was done in different scenarios of number of QTL (50 and 500 QTL), distribution of QTL effects (uniform, normal and gamma) and different heritability levels (0.1, 0.3 and 0.5). Pearson's correlation between true and predicted genomic breeding values (r) was used as the measure of prediction accuracy. Computing time and memory requirement were also measured for studied methods. The accuracy of rrBLUPm6 was higher than GBLUP and rrBLUP, and was comparable with BayesA. In addition, regarding computing time and memory requirement, rrBLUPm6 outperformed other methods and ranked first. A significant increase in accuracy of prediction was observed following increase in heritability. However, the number and distribution of QTL effects did not affect the accuracy of prediction significantly. As rrBLUPm6 showed a great performance regarding accuracy of prediction, computing time and memory requirement, we recommend it for genomic selection.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!