Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The human aromatase protein encoded by gene is the principle enzyme involved in the biogenesis of oestrogen in adipose tissues. An excessive exposure to endogenous oestrogen is regarded as an important determinant in the risk of breast cancer. Thus, in the present study we have used multiple computational methods to identify the most deleterious nonsynonymous SNPs in gene that caused probable genotypic-phenotypic alterations susceptible to breast cancer malignancy. In this study, a total of 338 nsSNPs were screened using 12 tools including SIFT, PROVEAN, PolyPhene-2, SNAP2, I Mutant 3.0, MuPro, mCSM, PhD SNP, SNP&GO, P-Mut, Dr Cancer, and, CScape. Additionally the structural and functional consequences of missense mutations were validated using Consurf, ModPred, SOPMA, and, HOPE server tools. Of the 338 nsSNPs subjected to functional, protein stability, disease associated, and, cancer susceptible analysis, 14 variants were predicted to be highly deleterious mutants. Further, structural and molecular studies suggested 10 variants (R435H, Y77C, Y81C, E302K, E210K; and L451P, G49D, G131D, L204W and D309) to have various deformities and caused structural disturbances of the protein. Through the combination of multiple computational tools and strategized analysis, we report seven novel high risk nsSNPs of human aromatase enzyme in association with the pathogenesis of human breast cancer.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!