A simple extraction method with no lipid removal for the determination of aflatoxins in almonds by liquid chromatography tandem-mass spectrometry (LC-MS/MS).

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Research Group: Génie des Procédés Et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco.

Published: September 2021

AI Article Synopsis

Article Abstract

The present study describes a simple and rapid method for the determination of aflatoxins in almonds using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Aflatoxins were extracted using a modified QuEChERS method with little sample preparation, excluding the use of laborious purification procedures. Extracts were frozen overnight to separate the majority of lipids. The method was successfully validated for almonds. Linearity was demonstrated in the range 0.125-20 µg/kg. Limits of quantification (LOQ) ranged from 0.34 to 0.5 μg/kg. Matrix effect was not significant for the aflatoxins. Satisfactory recoveries were obtained at spike levels below 1 μg/kg and between 1 and 10 μg/kg. Relative standard deviations (RSDs) of repeatability and reproducibility were below 15%. The method was successfully tested with two proficiency tests in almond powder and peanut paste, with acceptable -scores (-2 ≤ z ≤ 2). Only one of 11 local almond samples contained detectable aflatoxins, at concentrations below the maximum permitted level.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2021.1925167DOI Listing

Publication Analysis

Top Keywords

determination aflatoxins
8
aflatoxins almonds
8
almonds liquid
8
spectrometry lc-ms/ms
8
method
5
aflatoxins
5
simple extraction
4
extraction method
4
method lipid
4
lipid removal
4

Similar Publications

The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals.

View Article and Find Full Text PDF

This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) contamination of food crops pose severe public health risks, particularly in decentralized agricultural systems common in low-resource settings. Effective monitoring tools are critical for mitigating exposure, but their adoption is limited by barriers such as cost, infrastructure, and technical expertise. The objectives of this study were: (1) to evaluate common AFB1 detection methods, including enzyme-linked immunosorbent assays (ELISA) and lateral-flow assays (LFA), validated via high-performance liquid chromatography (HPLC), focusing on their suitability for possible applications in decentralized, low-resource settings; and (2) to conduct a barriers-to-use assessment for commonly available AFB1 detection methods and their applicability in low-resource settings.

View Article and Find Full Text PDF

It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites).

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are considered the most important mycotoxins in terms of food safety. The aim of this study was to evaluate the hepatotoxicity of AFB1 and OTA exposure in Wistar rats and to assess the beneficial effect of fermented whey (FW) and pumpkin (P) as functional ingredients through a proteomic approach. For the experimental procedures, rats were fed AFB1 and OTA individually or in combination, with the addition of FW or a FW-P mixture during 28 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!