Objective: To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs).

Methods: Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications.

Results: One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21-28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification).

Conclusion: Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258767PMC
http://dx.doi.org/10.1177/03000605211028554DOI Listing

Publication Analysis

Top Keywords

printing technology
12
intraoperative variables
12
versus mirror
8
three-dimensional printing
8
isolated acetabular
8
acetabular fractures
8
median follow-up
8
follow-up months
8
tpt mtt
8
major intraoperative
8

Similar Publications

Objective: The aim of this study is to test the feasibility of a custom 3D-printed guide for performing a minimally invasive cochleostomy for cochlear implantation.

Study Design: Prospective performance study.

Setting: Secondary care.

View Article and Find Full Text PDF

FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

PLoS One

January 2025

The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Harnessing spatiotemporal transformation in magnetic domains for nonvolatile physical reservoir computing.

Sci Adv

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.

Combining physics with computational models is increasingly recognized for enhancing the performance and energy efficiency in neural networks. Physical reservoir computing uses material dynamics of physical substrates for temporal data processing. Despite the ease of training, building an efficient reservoir remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!