In Europe, regions in the Mediterranean area share common characteristics in terms of high sensitivity to climate change impacts. Does this translate into specificities regarding climate action that could arise from these Mediterranean characteristics? This paper sheds light on regional and local climate mitigation actions of the Mediterranean Europe, focusing on the plans to reduce greenhouse gases emissions in a representative sample of 51 regions and 73 cities across 9 Mediterranean countries (Croatia, Cyprus, France, Greece, Italy, Malta, Portugal, Slovenia, Spain). The study investigates: (i) the availability of local and regional mitigation plans, (ii) their goals in term of greenhouse gas emissions reduction targets on the short and medium-long term, and (iii) the impact of transnational climate networks on such local and regional climate mitigation planning. Results of this study indicate an uneven and fragmented planning, that shows a Mediterranean West-East divide, and a link with population size. However, overall, both regional and city action seem insufficiently ambitious with regards to meeting the Paris Agreement, at least at city level. While national frameworks are currently weak in influencing regional and local actions, transnational networks seem to be engaging factors for commitment (at city level) and ambitiousness (at regional level). The uneven and fragmented progress revealed by this study, does not align with the characteristics shared by investigated regions and cities in terms of environmental, socio-political, climatic and economic conditions. The results support the call of a common green deal at the Mediterranean level to further address specific Mediterranean challenges and related needs. This will allow to capitalise on available resources, generate local-specific knowledge, build capacities, and support Mediterranean regions and cities in preparing the next generation of more ambitious mitigation plans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113146 | DOI Listing |
Sci Rep
December 2024
India Meteorological Department, New Delhi, 110003, India.
Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.
Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!