Lyticase Facilitates Mycobiome Resolution Without Disrupting Microbiome Fidelity in Primates.

J Surg Res

Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee. Electronic address:

Published: November 2021

Background: Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples.

Methods: With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso.

Results: Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase.

Conclusions: We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678161PMC
http://dx.doi.org/10.1016/j.jss.2021.06.023DOI Listing

Publication Analysis

Top Keywords

fecal samples
8
16s ribosomal
8
ribosomal rna
8
fungal
5
lyticase
4
lyticase facilitates
4
facilitates mycobiome
4
mycobiome resolution
4
resolution disrupting
4
microbiome
4

Similar Publications

The bacterial composition signatures of perianal abscess and origin of infecting microbes.

PeerJ

January 2025

Department of Anorectal Surgery, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Qingdao, China.

Background: Perianal abscess is a common anal condition primarily caused by bacterial infections, yet the precise origins of these infecting bacteria remain unclear. Understanding the distinct microbial signatures associated with periaabscesses is crucial for provide fresh ideas for disease prevention.

Materials And Methods: Samples of anal skin, feces, and abscesses were collected from a cohort of 75 patients diagnosed with perianal abscesses.

View Article and Find Full Text PDF

Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.

View Article and Find Full Text PDF

Background: The ketogenic diet is a dietary therapy with anti-seizure effects. The efficacy of the diet is variable, with initial animal studies suggesting the intestinal microbiome may have a modulating effect. Initial research on the role of the human microbiome in pediatric epilepsy management has been inconclusive.

View Article and Find Full Text PDF

Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood.

View Article and Find Full Text PDF

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!