Ultra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures - positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability. Desktop micro-computed tomography (micro-CT) provides an attractive balance: high-throughput imaging on the micron level without the restrictions of SR-CT availability. In this study, accuracy, reproducibility, and sensitivity of large-scale quantification of human osteocyte lacunar morphometries were assessed by ultra-high-resolution desktop micro-computed tomography. For this purpose, thirty-one transiliac human bone biopsies containing trabecular and cortical regions were imaged using ultra-high-resolution desktop micro-CT at a nominal isotropic voxel resolution of 1.2 µm. The resulting 3D images were segmented, component labeled, and the following morphometric parameters of 7.71 million lacunae were measured: Lacunar number (Lc.N), density (Lc.N/BV), porosity (Lc.TV/BV), volume (Lc.V), surface area (Lc.S), surface area to volume ratio (Lc.S/Lc.V), stretch (Lc.St), oblateness (Lc.Ob), sphericity (Lc.Sr), equancy (Lc.Eq), and angle (Lc.θ). Accuracy was quantified by comparing automated lacunar identification to manual identification. Mean true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were 89.0%, 3.4%, and 11.0%, respectively. Regarding the reproducibility of lacunar morphometry from repeated measurements, precision errors were low (0.2-3.0%) and intraclass correlation coefficients were high (0.960-0.999). Significant differences between cortical and trabecular regions (p<0.001) existed for Lc.N/BV, Lc.TV/BV, local lacunar surface area (
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2021.116094 | DOI Listing |
Bone
November 2021
Institute for Biomechanics, ETH Zurich, Zurich, Switzerland. Electronic address:
Ultra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures - positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability.
View Article and Find Full Text PDFBone
February 2021
Creighton University Osteoporosis Research Center, Omaha, NE, United States of America.
This review article focuses on imaging of bone tissue to understand skeletal health with regards to bone quality. Skeletal fragility fractures are due to bone diseases such as osteoporosis which result in low bone mass and bone mineral density (BMD) leading to high risk of fragility fractures. Recent advances in imaging and analysis technologies have highly benefitted the field of biological sciences.
View Article and Find Full Text PDFSci Rep
September 2015
Graduate Institute of Biomedical Engineering, National Taiwan University of Science &Technology, Taiwan.
As digital imaging technology advances, gigapixel or terapixel super resolution microscopic images become available. We have built a real time virtual microscopy technique for interactive analysis of super high resolution microscopic images over internet on standard desktops, laptops or mobile devices. The presented virtual microscopy technique is demonstrated to perform as fast as using a microscopy locally without any delay to assess gigapixel ultra high resolution image data through wired or wireless internet by a Tablet or a standard PC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!