Structure and substrate recognition by the Ruminococcus bromii amylosome pullulanases.

J Struct Biol

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States. Electronic address:

Published: September 2021

Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 6-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 6-α-D glucosyl-maltotriose captured β-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2021.107765DOI Listing

Publication Analysis

Top Keywords

ruminococcus bromii
8
wild type
8
nucleophile mutant
8
mutant d392a
8
complexed maltoheptaose
8
maltoheptaose 6-α-d
8
6-α-d glucosyl-maltotriose
8
α16 linkages
8
active site
8
amy12
6

Similar Publications

Evidence suggests that complex interactions among the gut microbiome, metabolic abnormalities, and brain have important etiological and therapeutic implications in major depressive disorder (MDD). However, the influence of microbiome-gut-brain cross-talk on cognitive impairment in MDD remains poorly characterized. We performed serum metabolomic profiling on 104 patients with MDD and 77 healthy controls (HCs), and also performed fecal metagenomic sequencing on a subset of these individuals, including 79 MDD patients and 60 HCs.

View Article and Find Full Text PDF

Impact of cigarette smoking on gut microbial dysbiosis: a structured literature review.

Gut Microbiome (Camb)

May 2024

Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.

The gut microbiota (GM) comprises microorganisms in the human gastrointestinal tract (GIT). Lifestyle choices like smoking lead to gut dysbiosis. This review assessed the effect of cigarette smoke (CS) on gut microbial dysbiosis (GMD) in active smokers compared to non-smokers, as well as the resulting public health implications.

View Article and Find Full Text PDF

Background: Fatigue is a highly prevalent symptom for individuals with polycystic ovary syndrome (PCOS); however, characterization of fatigue and investigation into the gut microbiome-a pathway that may contribute to fatigue-remains inadequately explored in Black women with PCOS.

Objectives: The purpose of this cross-sectional study was to examine fatigue and its relationship to the gut microbiome in adult Black women with PCOS.

Methods: Adult Black women with a diagnosis of PCOS were recruited for this cross-sectional study.

View Article and Find Full Text PDF

Polysaccharides, key bioactive compounds derived from Chinese herbs, are increasingly recognized for their therapeutic potential in modulating gut microbiota to treat various diseases. However, their efficacy in alleviating mammary inflammation and oxidative stress and protecting the blood-milk barrier (BMB) compromised by Staphylococcus aureus (S. au) infection remains uncertain.

View Article and Find Full Text PDF

Background: Previous studies have shown that microbial communities differ in obese and lean individuals, and dietary fiber can help reduce obesity-related conditions through diet-gut microbiota interactions. However, the mechanisms by which dietary fibers shape the gut microbiota still need to be elucidated. In this in vitro study, we examined how apple fibers affect lean and obese microbial communities on a global scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!