Cholinergic boutons are closely associated with excitatory cells and four subtypes of inhibitory cells in the inferior colliculus.

J Chem Neuroanat

Hearing Research Focus Group, Northeast Ohio Medical University, Rootstown, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA. Electronic address:

Published: October 2021

Acetylcholine (ACh) is a neuromodulator that has been implicated in multiple roles across the brain, including the central auditory system, where it sets neuronal excitability and gain and affects plasticity. In the cerebral cortex, subtypes of GABAergic interneurons are modulated by ACh in a subtype-specific manner. Subtypes of GABAergic neurons have also begun to be described in the inferior colliculus (IC), a midbrain hub of the auditory system. Here, we used male and female mice (Mus musculus) that express fluorescent protein in cholinergic cells, axons, and boutons to look at the association between ACh and four subtypes of GABAergic IC cells that differ in their associations with extracellular markers, their soma sizes, and their distribution within the IC. We found that most IC cells, including excitatory and inhibitory cells, have cholinergic boutons closely associated with their somas and proximal dendrites. We also found that similar proportions of each of four subtypes of GABAergic cells are closely associated with cholinergic boutons. Whether the different types of GABAergic cells in the IC are differentially regulated remains unclear, as the response of cells to ACh is dependent on which types of ACh receptors are present. Additionally, this study confirms the presence of these four subtypes of GABAergic cells in the mouse IC, as they had previously been identified only in guinea pigs. These results suggest that cholinergic projections to the IC modulate auditory processing via direct effects on a multitude of inhibitory circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440384PMC
http://dx.doi.org/10.1016/j.jchemneu.2021.101998DOI Listing

Publication Analysis

Top Keywords

subtypes gabaergic
20
gabaergic cells
16
cholinergic boutons
12
closely associated
12
cells
10
boutons closely
8
inhibitory cells
8
inferior colliculus
8
auditory system
8
subtypes
6

Similar Publications

Dorsal bed nucleus of the stria terminalis GABA neurons are necessary for chronic unpredictable stress-induced depressive behaviors in adolescent male mice.

J Psychiatr Res

January 2025

Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China. Electronic address:

Background: Previous studies have shown that neurons in the Bed Nucleus of the Stria Terminalis (BNST) respond to stress and play a key role in mental health. However, the cellular bases of BNST in adolescent depression remain elusive.

Methods: Male C57BL/6 mice were randomly assigned to the control (Ctrl) or chronic unpredictable stress (CUS) groups.

View Article and Find Full Text PDF

Bipolar disorder is a leading contributor to the global burden of disease. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.

View Article and Find Full Text PDF

GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.

View Article and Find Full Text PDF

The natural product MGN-3 (Biobran) is a defatted, partially hydrolysed rice bran-derived hemicellulose enzymatically modified with an extract of . It has a high proportion of arabinoxylan. It has a protective action against intracerebroventricular streptozotocin-induced murine sporadic Alzheimer's disease and reverses spatial memory deficit in this disease model.

View Article and Find Full Text PDF

Neuronal subtypes derived from the embryonic hypothalamus and prethalamus regulate many essential physiological processes, yet the gene regulatory networks controlling their development remain poorly understood. Using single-cell RNA- and ATAC-sequencing, we analyzed mouse hypothalamic and prethalamic development from embryonic day 11 to postnatal day 8, profiling 660,000 cells in total. This identified key transcriptional and chromatin dynamics driving regionalization, neurogenesis, and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!