The moonlighting protein fructose 1,6-bisphosphate aldolase as a potential vaccine candidate against Photobacterium damselae subsp. piscicida in Asian sea bass (Lates calcarifer).

Dev Comp Immunol

International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan. Electronic address:

Published: November 2021

Vaccination is the most effective, safe, and environmentally friendly method to prevent the outbreak of Photobacterium damselae subsp. piscicida (Phdp), a dangerous pathogen in aquaculture worldwide. Here, recombinant proteins of catalase, superoxide dismutase, isocitrate dehydrogenase, fructose 1,6-bisphosphate aldolase (Fba), and a mixture of all four proteins were investigated for their immunoprotective effects against photobacteriosis in Asian sea bass (Lates calcarifer). After immunization, experimental fish showed an increase in specific antibody levels and lysozyme activities, especially the Fba group. After a lethal challenge with Phdp strain AOD105021, the Fba group achieved the highest relative percentage of survival rate (70.21%) and a significantly lower bacterial load in the spleens than other groups 3 days after infection. The results suggest that Fba is a good candidate for subunit vaccine development against photobacteriosis in fish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2021.104187DOI Listing

Publication Analysis

Top Keywords

fructose 16-bisphosphate
8
16-bisphosphate aldolase
8
photobacterium damselae
8
damselae subsp
8
subsp piscicida
8
asian sea
8
sea bass
8
bass lates
8
lates calcarifer
8
fba group
8

Similar Publications

Fructose-1,6-bisphosphate induces phenotypic reversion of activated hepatic stellate cell.

Eur J Pharmacol

November 2013

Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre-RS, Brazil.

Hepatic stellate cells (HSC) play a key role in liver fibrogenesis. Activation of PPARγ and inhibition of fibrogenic molecules are potential strategies to block HSC activation and differentiation. Aware that the process of hepatic fibrosis involves inflammatory mediators, various anti-inflammatory substances have been studied in an attempt to revert fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!