Buffer capacity regulates the stratification of anode-respiring biofilm during brewery wastewater treatment.

Environ Res

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China. Electronic address:

Published: October 2021

AI Article Synopsis

  • Improving the buffer capacity of electrolytes can boost anode performance in bioelectrochemical systems (BESs), as shown by testing different phosphate buffer concentrations (5, 50, and 100 mM) on anode biofilms.
  • Results indicated that higher buffer concentrations enhanced electrochemical activity and reduced spatial heterogeneity in microbial communities within the biofilm, particularly enriching Geobacter spp. and limiting methanogen growth.
  • This study highlights the connection between buffer capacity and biofilm structure, revealing how these factors influence the overall efficiency of brewery wastewater treatment in BESs.

Article Abstract

Improving the buffer capacity of the electrolyte can enhance the anode performance in bioelectrochemical systems (BESs). To elucidate the mechanism underlying the facilitated BESs performance, this study used three different anode biofilms cultured with different concentrations of phosphate buffer (5, 50 and 100 mM) to investigate the biofilm response, in terms of the spatial structure of metabolic activity and microbial community, to different buffer capacities. Results showed that the electrochemical activities of the anode biofilms positively correlated with the buffer concentration. The spatial stratification of metabolic activity and microbial community of the anode biofilms were regulated by the buffer capacity, and the spatial microbial heterogeneity of the anode biofilm decreased as the buffer concentration increased. With increasing buffer capacity, Geobacter spp. were enriched in both the inner and outer layers of the biofilm, and the inhibition of methanogens growth improved the COD removal attributed to anode respiration. Additionally, the stimulation of EPS production in biofilms played a role in increasing the electrochemical performance of biofilms by buffer improvement. This study first revealed the regulation of buffer capacity on the stratification of anode biofilm during brewery wastewater treatment, which provided a deep insight into the relation of biofilm structure to its electrochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111572DOI Listing

Publication Analysis

Top Keywords

buffer capacity
20
anode biofilms
12
buffer
10
biofilm brewery
8
brewery wastewater
8
wastewater treatment
8
metabolic activity
8
activity microbial
8
microbial community
8
buffer concentration
8

Similar Publications

Context: Human milk provides nutrients for newborns, while breastfeeding is preferred, formula feeding can also provide necessary nutrition and after weaning, individuals of all ages frequently drink bovine milk. Bovine and human milk contain lactose as a carbohydrate source, and infant milk formulas are also designed the same. However, lactose is fermentable by Streptococcus mutans, much like sucrose but to a lower extent.

View Article and Find Full Text PDF

Effect of Chemical Treatment on the Mechanical and Hygroscopic Properties of an Innovative Clay-Sand Composite Reinforced with Fibers.

Materials (Basel)

January 2025

Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.

The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection.

View Article and Find Full Text PDF

Phosphorus (P) movement in soils is influenced by flow velocities, diffusion rates, and several soil characteristics and properties. In acidic soils, P is tightly bound to soil particles, reducing its availability to plants. Organomineral fertilizers combine organic matter with mineral nutrients, enhancing P fertilization efficiency, and reducing environmental impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!